

A-61872 October 2019 1

Contents
Introduction .. 3

References .. 3

HTTP in the APIs .. 3

Reference Section ... 5

SCANNER API ... 5

[method] api/scanner/<function> .. 5

Scanner Status ... 6

Scanner Capabilities .. 7

Scanner Log ... 11

CONFIG API.. 12

Configuration Settings... 12

Get Image of scanner .. 14

SESSION API ... 15

[method] api/session/<function> ... 15

Session Create ... 15

Session End ... 17

Session Status.. 18

Session Status – Status Only (Added in FW v1.07) ... 21

Session Status – Configuration Only (Added in FW v1.07) ... 22

Session Configuration ... 23

Session Configuration rules ... 25

Session Recreate and Scan .. 27

Session Start Scan ... 27

Session Stop Scan .. 27

Session Get Metadata ... 28

Session Get Image ... 30

Session Delete Image (Added to S2000w as of Firmware 180902) .. 31

CORS support .. 32

To Turn on CORS and CORS Preflight support: ... 32

CORS Header response ... 32

CORS Preflight ... 32

Error Codes – HTTP ... 33

A-61872 October 2019 2

Error Codes – returned from Status .. 35

ErrorNum Table ... 37

Timeouts ... 39

More Details .. 40

Scan Example .. 40

Scan API: URL and JSON Response .. 41

Programmers Page to play with the protocol ... 43

Diagnostic / Test page ... 43

Scan Example, pseudo code: ... 44

Typical Sequence to use the API’s... 45

Scanning .. 45

To scan many pages .. 46

Security ... 46

Why use the Scanner API vs the Session API ? ... 47

How to determine the connection type from the IP .. 47

Discovery Protocols ... 48

TXT Record from Scanner for _scanner service: ... 48

DNS Address .. 48

Link-Local Address ... 48

Static IP .. 48

Diagram Scanning States ... 49

Normal Scan .. 49

Second Job Scan in same Session .. 50

Skip Blank Pages – Back side of first sheet is blank, two sheets ... 51

Fiddler capture of scan ... 52

Fiddler’s Composer Scratchpad .. 53

A-61872 October 2019 3

Introduction
This document provides definition of the HTTP v1.1 Application Programming Interfaces for the Kodak i11x0WN/S2000w

Wireless Scanners.

 The Introduction contains concepts and terminology that will be used throughout the document.

 The Scanner API and the Session API control the functionality of scanning and monitoring progress. They are

explained in this document.

 The Configuration API is referenced, but it is not covered in depth.

The APIs use a RESTful protocol for accessing the scanner functionality through HTTP commands. The scanner driver

does not need to be installed on your host PC for you to access the API. All web browsers support a language that can

easily communicate via a RESTful protocol. Many compliable languages, and interpretive languages also talk RESTful

protocols. So without installing any driver on your host PC, for any operating system, this API is accessible.

A STATEFUL protocol is implemented during scanning. A session must be created. During the session, no other

application on a different PC can interrupt the current session. They will receive an error when they attempt to create

their own session. They can use the Scanner API to read information about the scanner and the current state of the

scanner.

Use the http://<ip>/conf/diag.html page to play with the individual commands and to get used to how this works before

writing code. Please read up on how Status is required to drive the states of the scanner during scanning.

References
HTTP Protocol http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Error Codes https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

HTTP in the APIs

Commands

HTTP is the language of the web. Our APIs define a HTTP language to drive our scanners. Our APIs use the following

commands:

 GET – reads information from the scanner, but does not change any information, state or start any work.

 POST – starts (creates) a process, and also creates a SessionId. The SessionId is used on every function within the

API to assure you are the only one accessing the data.

 PUT – changes (updates) the state of a running process.

 DELETE – removes the current process that was started with POST.

PUT and POST require JSON value pairs to define the command parameters. The parameters can be put either in the

HTTP body or in the URL of the HTTP command.

$Variable references below define a string or number variable that is set by the caller.

All data responses are in JSON format.

All commands (“startscan”, “status” etc.) are case insensitive, e.g: “StartScan” = “STARTSCAN”.

https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

A-61872 October 2019 4

Addressing your scanner

Examples in this document show 10.0.0.1 as the IP address, which is the default ad hoc IP address (also referred to as

Wireless Directly in other scanner documentation). When using the API, you should use the actual IP address for your

scanner (see the Discovery section).

The APIs support both HTTP, port 80 and HTTPS, port 443, to access the scanner web pages and internal web api. Port 80

is the default port for the web server and is used by the scanner for HTTP. Note that this port number will be advertised

with the discovery service. Port 443 is used for HTTPS, TLS secure access to the scanner APIs and web site.

Read the IP address and port from the discovery service. Use those to resolve the scanner address.

A-61872 October 2019 5

Reference Section

SCANNER API
The SCANNER API is read only and enables monitoring of the state of the scanner, and various information about the

scanner. The following functions are available for the Scanner APIs:

 [method] api/scanner/<function>

Method Function Description

GET Status Retrieve the scanner status; can be performed at any time.

GET Capabilities Read capabilities of the API, which can be used to learn the
language and syntax of the commands.

GET Log/{Optional scan log name} Obtain the scanner logs from the scanner.

A-61872 October 2019 6

Scanner Status

Method: GET Function: Status

Verify information about the scanner, and its current state.

[GET] https://10.0.0.1/api/scanner/status or use HTTP

Params in body: none

Extra HTTP Header Values: none

Provides scanner information useful for determining if the scanner is accessible, and what type of scanner this is.

Return Value: (“Variable”:Value, Variables are case insensitive)
 Returned in JSON format the variables to show the scanner status.
Info:

Vid – Vendor ID
Pid – Product ID
Mfg - Manufacturer
Mdl – Model
ScannerState can be (Idle, In Session, Scanning, Done Scanning, Error) <- See Scanner Capabilities
ErrorNum= 0 <- Scanner Error num. NOT last HTTP error. Is a status of the embedded scanner.
Displayname – intended use as Friendly name for display
HostName – Fixed string, may be different from Displayname, this is the name of the scanner and used in DNS
addressing. ie: <HostName>.domain
SerialNum – Fixed string – unique identifier of this scanner
EstimatedMaxNumImages=50 <- currently fixed, may be calculated in the future
OCPUserName=”Vinnie” <- Who’s currently scanning

Raw HTTP Command:

GET https://10.0.0.1/api/scanner/status

Raw HTTP Response:
HTTP/1.1 200 OK
Content-Length: 331
Content-Type: application/json; charset=utf-8
X-Frame-Options: DENY
Date: Thu, 10 May 2018 20:16:14 GMT
Server: lighttpd/1.4.49

{"Status":{
 "Vid":"0x29CC",
 "Pid":"0x101C",
 "Mfg":"KODAK Alaris",
 "Mdl":"S2080w",
 "ScannerState":"Done Scanning",
 "ErrorNum":0,
 "EstimatedMaxNumImages":50,
 "DisplayName":"S2080w-64633610",
 "HostName":"S2080w-64633610",
 "SerialNum":"64633610",
 "PlatformVersion":"180506",
 "OCPUserName":""}}

Graphical view of JSON response:

http://127.0.0.1/api/scanner/status

A-61872 January 2019 7

Scanner Capabilities

Read capabilities of the API, which can be used to learn the language and syntax of the commands. It is intended to

enable you to learn what has changed from release to release, dependencies and syntax of commands.

Method: GET Function: Capabilities

[GET] https://10.0.0.1/api/scanner/capabilities <- V1 capabilities

[GET] https://10.0.0.1/api/scanner/capabilities?V1

[GET] https://10.0.0.1/api/scanner/capabilities?V2

 Params in body: none

Extra HTTP Header Values: none

Return Value:

V1 Capabilities:

Reverted in our 190903 release to require specifying V2 to obtain V2 capabilities. The scanner always provides

V2 capabilities, but will return V1 or V2 information to maintain compatibility with older applications that know

only about V1 functionality. This shows a list of commands that could be configured in the PUT of api/session to

change the configuration of the scanner.

V2 Capabilities:

The V2 capabilities structure reveals more functionality provided within the scanner and a reorganization of

capabilities to enable dynamic menu design, once you understand how this work. It should be obvious how this

functionality works, but we’ll provide an explanation below

A list of JSON data that contain three primary sections:

Configuration is an array of strings defining the key and values that are allowed in the PUT api/session

command, to configure a scan job.

Since many primary controls have additional fields that are only valid when a selection is made, we added

SubControls. For example DPI has no subcontrols, but if you choose AutomaticAdvanced for

ForegroundboldnessAggressiveness, you would show a slider selection with an english label of “Aggressiveness”,

and a range of -10 to 10.

Note: We only support English in the text for this feature.

MaxDocumentLength has no primary control to configure it, we choose to show “#NoPrimaryControl#”. This

means if you are dynamically creating UI items, you should skip this control, but look in the SubControls for the

corresponding primary control to determine if you should populate a sub control item for each item.

SubControls: this provides a mechanism to enable a look up for every Configuration value to determine if this is

another setting for that value. For example: ColorDropOut when set to Predominant as a Subcontrol:

SubControls->Predominant->ColorDropOut that defines a command of “ColorDropOutAggressiveness” with a

minimum value of -10 and maximum of 10, and a label named “Aggressiveness”. Then if you look in the defaults

section you can see that the default is 0.

http://127.0.0.1/api/scanner/capabilities
http://127.0.0.1/api/scanner/capabilities
http://127.0.0.1/api/scanner/capabilities

A-61872 January 2019 8

Defaults: this section match’s what you will get the first time you create a session and read the

api/session/configuration. It provides the list of variables that can be set, and their default values. It does not tell

you of the dependency on those variables. But you could send “Defaults” in a “Configuration” in an api/scanner

PUT call to force defaults, or make single entry modifications to settings in the scanner. All settings can be

applied, even those inactive due to, for example, the color mode. So set ColorDropOut, but it won’t take effect

until the ColorMode is changed to BW. This enables you to read all of the settings, change one or more, and put

them all back to the scanner without error.

Implementors Tips:

The response to this command should be analyzed by developers to determine what changes have been made to the

API.

Note – we now do validation checking on all numeric fields. If you do “AutoStart”:”0” – previously we ignored the “0”

and this worked, but now we will return a 406 to inform you that the format is incorrect, with additional HTML in the

body and in the X-Status header to tell you exactly what is wrong. If you do, for example: “Duplex”: Single, which is

missing the parens, you’ll get a 405 informing you the character offset within the JSON data that is not proper JSON.

The Capabilities command is not needed within your application, but is very important to a developer to learn what has

been added, and details on how to learn the API. You should do a quick GET on <ip>/api/scanner/capabilities to see

what is new in the scanner, after updating firmware. More features may have been added, which will become evident

from calling Capabilities. Also Capabilities will enable you to know exactly the parameters, range, defaults supported for

each scan setting. The way this is structured is that primary commands are a list of controls with an array of choices.

Each choice may have a linked “SubControl” that compliments the primary command. The SubControl is one or more

keys where the values are integer. Other than the specific commands and subcommands what you can not tell is the

dependency on the color mode. The rules for those dependancies must be found in this document. For example:

Scanning B&W TIFF, and Color PDF (Dual Stream), requires OutputType to be set to Color_BW. The

http://<ip>/conf/diag.html page and underlying javascript may help, but also look at Session Configuration rules.

Our goal is to not remove any features in the existing API, so the code that you develop for the very first version of the

firmware, will work in subsequent firmware releases. For example, AutoStart was not provided in the first release of the

Web API. It was added and can be configured via the PUT configuration command, but if not included will default to the

original setting of 0 or off, which is the default setting after the addition. The same holds true for all of the new features.

Capabilities documents what you can submit as a job configuration via the PUT api/session/configuration command. To

confirm a feature is available within the scanner, you could implement within your code to validate it via this function,

and flag if it is not listed. Some scanners may support more or less features, depending on the firmware version.

Tracking the firmware version via api/config/settings.

Raw HTTP Command:
GET https://10.0.0.1/api/scanner/capabilities or ?V1

Raw HTTP Response to V1:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS
Access-Control-Allow-Headers: Content-Type, Access-Control-Allow-Headers, X-Requested-With, Origin, Content-Length, SessionId
Content-Length: 383

https://10.0.0.1/api/scanner/capabilities

A-61872 January 2019 9

Content-Type: application/json; charset=utf-8
X-Frame-Options: DENY
Date: Fri, 20 Sep 2019 16:30:46 GMT
Server: lighttpd/1.4.49

{"Configuration":{
 "DPI":[200,300],
 "ScanSide":["Simplex","Duplex"],
 "SkipBlankPages":[0,1],
 "ColorMode":["Color","Gray","BW"],
 "State":["Idle","In Session","Scanning","Done Scanning","Error"],
 "AutoStart":[0,1],
 "ColorDropOut":["None","Red","Green","Blue","Orange","OrangeAndRed","Predominant","Multiple"],
 "OutputType":["Images"]
},
"Version":1
}

Raw HTTP Command:
GET https://10.0.0.1/api/scanner/capabilities?V2

Raw HTTP Response V2:
HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS

Access-Control-Allow-Headers: Content-Type, Access-Control-Allow-Headers, X-Requested-With, Origin, Content-Length, SessionId

Content-Length: 2844

Content-Type: application/json; charset=utf-8

X-Frame-Options: DENY

Date: Fri, 20 Sep 2019 16:33:34 GMT

Server: lighttpd/1.4.49

{

 "Configuration":{

 "DPI":[200,300],

 "ScanSide":["Simplex","Duplex"],

 "SkipBlankPages":[0,1],

 "ColorMode":["Color","Gray","BW","Color_BW"],

 "State":["Idle","In Session","Scanning","Done Scanning","Error"],

 "AutoStart":[0,1],

 "ColorDropOut":["None","Red","Green","Blue","Orange","OrangeAndRed","Predominant","Multiple"],

 "OutputType":["Images","SinglePageColorPDFPlus2TIFs"],

 "ColorAutoBrightnessMode":["None","Automatic"],

 "ColorBalanceMode":["None","Manual","Automatic","AutomaticAdvanced"],

 "ForegroundBoldnessMode":["None","AutomaticAdvanced","Automatic"],

 "BackgroundSmoothingMode":["None","AutomaticAdvanced","Automatic"],

 "BinarizationMode":["iThresholding"],

 "MaxDocumentLength":["#NoPrimaryControl#"]

 },

 "SubControls":{

 "Manual":{

 "ColorBalanceMode":{

 "ColorBalanceRed":{"Min":-50, "Max":50, "Label":"Red"},

 "ColorBalanceGreen":{"Min":-50, "Max":50, "Label":"Green"},

 "ColorBalanceBlue":{"Min":-50, "Max":50, "Label":"Blue"}

 }

 },

 "AutomaticAdvanced":{

 "ForegroundBoldnessMode":{"ForegroundBoldnessAggressiveness":{"Min":-10, "Max":10, "Label":"Aggressiveness"}},

 "BackgroundSmoothingMode":{"BackgroundSmoothingAggressiveness":{"Min":-10, "Max":10, "Label":"Aggressiveness"}},

 "ColorBalanceMode":{"ColorBalanceAggressiveness":{"Min":-2, "Max":2, "Label":"Aggressiveness"}}

 },

 "Predominant":{

 "ColorDropOut":{"ColorDropOutAggressiveness":{"Min":-10, "Max":10, "Label":"Aggressiveness"}}

 },

https://10.0.0.1/api/scanner/capabilities?V2

A-61872 January 2019 10

 "Multiple":{

 "ColorDropOut":{"ColorDropOutAggressiveness":{"Min":-10, "Max":10, "Label":"Aggressiveness"}}

 },

 "iThresholding":{

 "BinarizationMode":{"BinarizationContrast":{"Min":-50, "Max":50, "Label":"Contrast"}}

 },

 "#NoPrimaryControl#":{

 "MaxDocumentLength":{"MaxDocumentLength":{"Min":25, "Max":400, "Label":"Maximum Document Length (0.1 inches)"}}

 }

 },

 "Defaults":{

 "DPI": 200,

 "ScanSide":"Duplex",

 "ColorMode":"Color",

 "SkipBlankPages":0,

 "AutoStart":0,

 "ColorDropOut":"None",

 "ColorDropOutAggressiveness":0,

 "OutputType":"Images",

 "ColorAutoBrightnessMode":"Automatic",

 "ColorBalanceMode":"Automatic",

 "ColorBalanceAggressiveness":0,

 "ColorBalanceRed":0,

 "ColorBalanceGreen":0,

 "ColorBalanceBlue":0,

 "ForegroundBoldnessMode":"None",

 "ForegroundBoldnessAggressiveness":0,

 "BackgroundSmoothingMode":"None",

 "BackgroundSmoothingAggressiveness":0,

 "BinarizationMode":"iThresholding",

 "BinarizationContrast":0,

 "MaxDocumentLength":140

 },

 "Version":2

}

A-61872 January 2019 11

Scanner Log

Method: GET Function: Log

 [GET] https://10.0.0.1/api/scanner/log<? logfilename.ext>

<optional parameter> - if missing the logfilename will be “S2000 Series Scanner.log”. The text file downloaded will

be stored in the default download folder from a browser. Logs won’t be overwritten. New logs will append (1), or (2) …

Params in body: none

Extra HTTP Header Values: none

Return Value:

Text document.

Raw HTTP Command:

https://10.234.10.175/api/scanner/log

https://10.234.10.175/api/scanner/log?LogFile.txt

Raw HTTP Response:
HTTP/1.1 200 OK
X-Frame-Options: DENY
content-disposition: attachment; filename=S2000 Series Scanner.log
Content-Length: 96057
Date: Wed, 17 Feb 2016 08:13:14 GMT
Server: lighttpd/1.4.35

<text information contained in various system logs of our product>

https://10.0.0.1/api/scanner/log%3c?%20logfilename.ext
https://10.234.10.175/api/scanner/log
https://10.234.10.175/api/scanner/log?LogFile.txt

A-61872 January 2019 12

CONFIG API
This is a small sampling of the configuration API which is available to fully configure the connectivity of the scanner.

[method] api/config/<function>

Method Function Description

GET Settings Returns a block of configuration settings and current network settings. S2000w
has values from scanner/status here to reduce the number of queries.

GET Image?Scanner Returns a PNG image of the scanner you are attached to. This image will have
transparent background, so can be scalled to fit on any color background you
have on your web page.

Configuration Settings

Method: GET Function: Settings

[GET] https://10.0.0.1/api/config/settings

Params in body: none

Extra HTTP Header Values: none <- since there is no SessionId, this can be issued by anyone at any time.

Return Value:

A JSON response that contains all of the configuration settings and active settings (IP address…).

Implementors Tips:

Additional values may be added to this list. All errors will follow the normal HTTP error responses (200=success). An

additional Status field is put in the header response to provide additional information for any errors that result in a

duplicate number. All errors will be documented.

SystemStatus.PlaformVersion will be important. “181005” is the first release with this enhanced version of the

Capabilities command. The version is formatted YYMMRR where RR is an increasing value and captures multiple

releases within the same month. It is not the day.

Note that in most cases you can not tell whether you are connected via the network to a device that is using either WiFi

or Ethernet. But via these settings you can determine how this scanner is configured.

WIFI_MODE – supports values of “STA”, “OFF” or “AP”

 STA – stands for Station, otherwise known as Infrastructure, which we refer to as wireless network

 OFF – WiFi is turned off

 AP - WiFi is in ad-hoc or stand alone network mode which we call Wireless Directly

ETH0_IP_MODE – supports values of “DHCP”, “STATIC” or “OFF”

 DHCP is a normal Ethernet cable that obtains it’s IP from a server.

 STATIC is a manually configured IP address.

 OFF means Ethernet is not configured.

ETH0_CARRIER_DETECTED – even though Ethernet may be detected “1”, it may not be configured.

You can even detect if USB is connected: USB_HOST_CONNECTED.

So you could choose to reconfigure a scanner on the fly if desired, by detecting that you are in a WIFI Mode and

reconfigure it for Ethernet if an Ethernet cable is detected.

https://127.0.0.1:80/api/config/

A-61872 January 2019 13

Raw HTTP Command:

https://10.0.0.1/api/config/settings <- where 10.0.0.1 is the ip address of the scanner

Raw HTTP Response:
HTTP/1.1 200 OK
Content-Length: 1331
Content-Type: application/json; charset=utf-8
X-Frame-Options: DENY
Date: Thu, 10 May 2018 20:30:06 GMT
Server: lighttpd/1.4.49

{"SystemStatus":
{
 "USB_HOST_CONNECTED":"0",
 "ETH0_CARRIER_DETECTED":"1",
 "ETH0_IP_ADDRESS":"10.234.10.17",
 "WIFI_IP_ADDRESS":"10.0.0.1",
 "ETH0_NETMASK":"255.255.255.0",
 "WIFI_NETMASK":"255.255.255.0",
 "ETH0_MAC_ADDRESS":"c8:fd:19:2b:10:fc",
 "WIFI_MAC_ADDRESS":"3c:a0:67:44:af:8e",
 "WIFI_SIGNAL_STRENGTH":"4",
 "WIFI_LINK_QUALITY":"4",
 "WIFI_BITRATE":"72.2",
 "WIFI_ESSID":"S2080w%2D64633610",
 "LOW_POWER_MODE":"0",
 "FLATBED_CONNECTED":"0",
 "SW_UPDATE_STATUS":"",
 "NUM_PROCESSOR_CORES":"2",
 "NUM_DSP_CORES":"2",
 "CPU_TEMPERATURE":"60200",
 "GPU_TEMPERATURE":"59800",
 "CORE_TEMPERATURE":"58500",
 "DSP_TEMPERATURE":"59800",
 "IVA_TEMPERATURE":"59800",
 "WIFI_MODE":"AP",
 "ETH0_IP_MODE":"DHCP",
 "WIFI_STA_IP_MODE":"DHCP",
 "WIFI_AP_IP_ADDRESS":"10.0.0.1",
 "WIFI_AP_CHANNEL":"6",
 "WIFI_AP_COUNTRY_CODE":"US",
 "WIFI_AP_MHZ":"20",
 "ENERGY_STAR_TIMEOUT":"240",
 "POWER_OFF_TIMEOUT_ENABLED":"OFF",
 "POWER_OFF_TIMEOUT":"240",
 "Vid":"0x29CC",
 "Pid":"0x101C",
 "Mfg":"Kodak Alaris Inc.",
 "Mdl":"S2080w Scanner",
 "DisplayName":"S2080w-64633610",
 "HostName":"S2080w-64633610",
 "SerialNum":"64633610",
 "PlatformVersion":"180506",
 "UserMode":"SINGLE",
 "ScannerModel":"S2080w",
 "OCPGraphicFormat":"PNG",
 "OCPGraphicWidth":"64",
 "OCPGraphicHeight":"64"}

}

https://10.0.0.1/api/config/settings

A-61872 January 2019 14

Get Image of scanner

This enables access to a product specific PNG image, which can be scaled for use on your application.

Method: GET Function: Image

[GET] https://10.0.0.1/api/config/Image?Scanner

Params in body: none

Extra HTTP Header Values: none <- since there is no SessionId, this can be issued by anyone at any time.

Return Value:

Implementors Tips:

It is used within the web pages within the scanner and may be used within your application to show an image of the

scanner.

Scale it as you deem fit. An example use of this is on the scanners web pages.

Our use of this to display within our web page is to use:

<img title="" id="ScannerImageStatus"

src="/api/config/image?scanner" />

With a CSS style to set the width, border, margin, and float, and a hover definition to scale the size.

https://127.0.0.1:80/api/config/

A-61872 January 2019 15

SESSION API
See ‘Fiddler’s Composer Scratchpad ’ near bottom of the document for examples of using the API using an alternate

method of putting the SessionId onto the URL of the api. We support setting SessionId in the header, or the URL.

Also note that the ip address can be a DNS name provided when we register our scanner on your corporate network

with your DNS server, for example: https://s2080w-64633610.kodakalaris.net/api/session

[method] api/session/<function>

The Session Web API follows the CRUD design, Create, Retrieve, Update and Delete.

Method Function Description

POST Session Create: starts a new session. Returns a SessionId or throws an HTTP
error if something is wrong, see Error section.

GET Session Status&Config: Read the root of this tree, obtaining both Status and
Configuration settings. Learn how the job is progressing, and when to call GET
Image.

GET Status Session Status: Read the status branch to obtain job status information.

GET Configuration Session Config: Read the configuration branch to obtain the job configuration
settings.

DELETE Session End: End the current session, and delete all images for this session.

DELETE Image/# Delete a specific image and metadata from the scanner to free up memory for
continuous scanning. Optional command! # is an integer from 1 to
NumImagesScanned.

PUT Change Config: Sets the state and passes configuration branch parameters that
are read from the GET api/scanner/configuration. Only allowed when scanner
state is “IN SESSION” or “DONE SCANNING”.

POST StartScan Moves the scanner state to “SCANNING”. Takes an optional parameter to set
the scanner display user name.

POST StopScan Moves the scanner state from “SCANNING” to “DONE SCANNING”. Completes
the currently scanning page. This is a graceful stop, which can be restarted with
another StartScan.

GET Image/# Read JPG for Color, Grayscale image, and TIF for BW image, which is set via PUT
configuration. # is an integer from 1 to NumImagesScanned, which is read from
GET Status.

GET Metadata/# # is an integer from 1 to NumImagesScanned, which is read from GET Status.
This obtains information about the image that has been scanned.

Session Create

Method: POST Function: empty

[POST] https://10.234.10.175/api/session

Params in body:

{“OCPUserName”:”Jim Smith”} <- users name

Extra HTTP Header Values: none <- No SessionId exists until this command completes successfully.

Queries to start a new session and retrieve the Session ID. This session number must be used within 5 minutes or the

session will timeout. Create session locks out all other PC’s from driving a scan session.

Return Value:

SessionId - string which identifies this session. This is a non-predictable GUID in string form. Save it as a string – this

string is used in subsequent calls. If an API does not require this string, then that API can be called at any time.

https://10.234.10.175:80/api/session

A-61872 January 2019 16

Raw HTTP Command:
POST http://10.234.10.152/api/session HTTP/1.1
Host: 10.234.10.152
Content-Length: 31

{
"OCPUserName":"Jim Smith"
}

Raw HTTP Response:
HTTP/1.1 200 OK
X-Frame-Options: DENY
Content-Length: 26
Content-Type: application/json; charset=utf-8
Status: 200 Success
Date: Fri, 08 Apr 2016 02:59:06 GMT
Server: lighttpd/1.4.35

{"SessionId":"1251877821"}

Implementors Tips:

The timeout is reset on activity within the session api. Your use of this session is to start a scan and poll Session Status

during a scan job, and the status poll should occur within a frequency shorter than 5 minutes, typically once every

second during scanning. This will keep the session from timing out and enable the scan engine to offload images from

our internal DSP, which is an extremely fast image processing circuit. If you implement creating a session on start of

your application, you should poll status every few minutes to keep it from timing out. When it times out you should call

Session End (Delete).

$OCPUsername is passed in the body of the HTTPS, in JSON format.

This enables us to display a string on the OCP. For example: “Reserved for <persons name>”. You may want to allow the

<persons name> string to be configurable for each user within your application. If this field is missing or empty, we

default to a OCP Username of “Mobile User”

Note that there are restrictions that we must enforce for length on the OCP display, which should be followed.

Please read the Timeout section above.

Note that OCP, stands to Operator Control Panel.

If you issue TWO Create Sessions. The second Create Session will fail with a “423 Locked” error response. Error of 408

means the scanner is WAKING and you should wait and retry this. WAKING is an unspecified time, but may be around 2

seconds.
HTTP/1.1 423 Locked
Status: 423 Locked. Someone else has an active session.
Transfer-Encoding: chunked
Date: Thu, 10 Sep 2015 19:33:07 GMT
Server: lighttpd/1.4.33

http://10.234.10.152/api/session

A-61872 January 2019 17

Session End

Method: DELETE Function: empty

 [DELETE] https://10.0.0.1/api/session

This ends the active session, freeing up all internal resources previously created within this session. This will delete all of

your images from the scanner.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Return Value:

Success returns 200 OK response and no data. This will only fail if the SessionId is invalid or missing.

Raw HTTP Command:
DELETE https://10.234.10.175/api/session HTTP/1.1
Host: 10.234.10.175
SessionId: 1234

Raw HTTP Response:
HTTP/1.1 200 OK
Content-Length: 0
Status: 200 Success
Date: Fri, 11 Sep 2015 19:19:49 GMT
Server: lighttpd/1.4.33

http://10.234.10.175/api/session

A-61872 January 2019 18

Session Status

Method: GET Function: empty

[GET] https://10.0.0.1/api/session?SessionId=<sessionId> This reads the root tree from the scanner, which includes

both Status and Configuration information.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Error returns:

If the State goes from Scanning to Error, you should either DELETE the session to abort the job, or monitor the status

until the ErrorNum goes to 0, and PUT a new scan job to restart scanning of that job. We do not support continuation of

a scan after clearing the error. DELETE and PUT of a new scan job will delete all stored images and restart from

NumImagesScanned=0. For more information about ErrorNum see section ErrorNum Table.

Implementors Tips:

YOU MUST DO THIS COMMAND DURING SCANNING, and not more than once per second. This command is the heart

beat of the scanning API. Once you issue a StartScan command, the paper will start moving and internally we will run at

full speed. We use a large internal DSP memory buffer to cache images, once that is full scanning will pause. Internally

we transfer from that buffer to another larger system memory buffer, which enables us to cache around 64MB of image

data. If either fills, we will pause. To reduce use of the larger buffer you would use the new DELETE

api/session/image?<imageNum> command.

It might take a few minutes for Pause to occur, so no major rush on this, but your process should include polling of

Status , until the need to call this status.State changes to “Done Scanning”. If you don’t call Status within five minutes,

the job will timeout, the scan job will be terminated and deleted. We need to know that you are still there, by issuing

any of the Web API commands to reset our five minute timer. Use the conf/diag.html web page to play with the API and

understand how this works before writing code.

Oct 2018 update:

We’ve added NumImagesScanned. NumImagesStored has changed. BUT the NumImagesStored changes will not impact

software you have previously written. NumImagesStored will only change if you never call delete image. If you never

call delete image, NumImagesStored will equal NumImagesScanned. The scanner can store around 50 images of color

compressed 300 DPI images before the image buffer is full. You can monitor this from the new Status.PercentAvailable

to see if your use of Delete is needed.

Note that SessionId can be in the header or the URL. Also note that CORS may not pass the header information through,

if you are calling the scanner across domains, and CORS is enabled in the scanner.

Key Variables within Status:

Status.State is read only parameter, which starts at “Idle”, once you Post to api/session you have created a session and

from that point you use the SessionId to access the Session. You will then be in “In Session” state. Once you StartScan,

this moves to “Scanning” state at which time “NumImagesScanned” becomes very important. “Done Scanning” or

“Error” define the final states from which you can end the session via DELETE, or start another scan via

“api/session/startscan”. From capabilities you can see all of the possible settings:

"State":["Idle","In Session","Scanning","Done Scanning","Error"].

https://10.0.0.1/api/session?SessionId=%3csessionId

A-61872 January 2019 19

Status.NumImagesStored and Status.NumImagesScanned starts at 0, and increases as pages are scanned. In duplex

mode, these numbers will increase by 2 for each page. As soon as NumImagesScanned changes, you can perform a GET

api/Image command to obtain the scanned image. Reading of images can be done while still in “Scanning” state. You

then read pages 1, 2, and wait for NumImagesScanned to increase beyond 2.

If you request an image number greater than NumImagesScanned, you will get an error. For example:

Status: 416 Parameter out of range. Image request greater than number of images available! image:1, numImagesScanned:0

Once the “NumImagesScanned” changes, you can get the image or metadata, and when the “State” changes to “Done

Scanning”, the final image count will be provided via “NumImagesScanned”.

If you are scanning a PDF + BW images. The NumImagesScanned in duplex mode will move from 0, 3, 6, 9… Where every

third page is the PDF, starting at page 1. In Simplex mode the NumImagesScanned will be 0,2,4,6… where every other

page is a PDF, starting at page 1. You should read the metadata for each image to determine exactly what information is

available for the image.

If you delete an image, NumImagesStored will decrement, but NumImagesScanned will remain the total number of

images scanned. You should not use NumImagesStored to access your images if you are using delete image.

Status.PaperDetected accesses internal sensors to determine if the paper sensor is blocked.

Status.MemoryAvailable defines the percent of memory available for scanning. This will start at 100% and decrease as

images are scanned. If you get to 0% your scan job will stop with an error. You will be able to read the scanned images,

but you must end the session to continue scanning. You will not be able to download all of the images that were

scanned. You should use delete image to avoid this.

The Status command also acts as a KEEP ALIVE for the session. There is a five minute timeout built into the scanner. If

you get status once every five minutes, the scanner will not drop your session. If are disconnected, the scanner goes

back to IDLE state, will drop your session and report a 405 error informing you that the sessionId is no longer valid.

The scanner relies on this command to pump its state. You’ll notice that when you StartScan/StopScan then Put

Configuration you will get an error. This is due to the StopScan being a message to transition to “Done Scanning”, and

finish the active page that is scanning. This will work successfully: StartScan/StopScan/Get Status/Put Configuration.

A-61872 January 2019 20

Raw HTTP command:
GET https://10.234.10.175/api/session HTTP/1.1
Host: 10.234.10.175
SessionId: 1234

Success returns:

 NumImagesStored: 0..?? <- Could be more than 50, dependent on amount of storage on scanner.

 NumImagesScanned: 0..??<- Could be more than 50, dependent on amount of storage on scanner, and the number of

images deleted while scanning.

 State: Scanning <- "Idle", "In Session", "Scanning", "Done Scanning", "Error"

 DPI=200 <- same as defined in PUT

ScanSide=Duplex <- same as defined in PUT

ColorMode=Color <- same as defined in PUT

SkipBlankPages=0 <- 0= False, 1=True

PaperDetected=0 <- 0=No Paper in Scanner, 1=Paper in Scanner

ErrorNum: 0 <- Scanner Error num. NOT last HTTP error. Is a status of the embedded scanner.

LastError: errorString <- Last Status string with some details on last HTTP error that occurred .

Raw HTTP Response:
HTTP/1.1 200 OK
X-Frame-Options: DENY
Content-Length: 843
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS
Access-Control-Allow-Headers: Content-Type, Access-Control-Allow-Headers, X-Requested-With, Origin,
Content-Length
Status: 200 Success
Date: Tue, 23 Oct 2018 14:25:18 GMT
Server: lighttpd/1.4.49

{
"Status":{
 "NumImagesScanned":9,
 "NumImagesStored":9,
 "State":"Done Scanning",
 "ErrorNum":0,
 "LastError":"Status: 200 Success",
 "PaperDetected":"0",
 "PercentAvailable":99},
"Configuration":{
 "DPI":200,
 "ScanSide":"Duplex",
 "ColorMode":"Color_BW",
 "SkipBlankPages":0,
 "AutoStart":1,
 "ColorDropOut":"None",
 "ColorDropOutAggressiveness":0,
 "OutputType":"SinglePageColorPDFPlus2TIFs",
 "ColorAutoBrightnessMode":"Automatic",
 "ColorBalanceMode":"Automatic",
 "ColorBalanceAggressiveness":0,
 "ColorBalanceRed":0,
 "ColorBalanceGreen":0,
 "ColorBalanceBlue":0,
 "ForegroundBoldnessMode":"None",
 "ForegroundBoldnessAggressiveness":0,
 "BackgroundSmoothingMode":"None",
 "BackgroundSmoothingAggressiveness":0,
 "BinarizationMode":"iThresholding",
 "BinarizationContrast":0,
 "MaxDocumentLength":140}
}

http://10.234.10.175/api/session

A-61872 January 2019 21

Session Status – Status Only (Added in FW v1.07)

Method: GET Function: Status

 [GET] https://10.0.0.1/api/session/status

HTTP/1.1 200 OK
X-Frame-Options: DENY
Content-Length: 149
Content-Type: application/json; charset=utf-8
Status: 200 Success
Date: Tue, 23 Oct 2018 14:25:18 GMT
Server: lighttpd/1.4.49

"Status":{
 "NumImagesScanned":9,
 "NumImagesStored":9,
 "State":"Done Scanning",
 "ErrorNum":0,
 "LastError":"Status: 200 Success",
 "PaperDetected":"0",
 "PercentAvailable":99}

Implementors Tips:

The response to this query returns only the status branch of the Session Status tree.

https://10.0.0.1/api/session/status

A-61872 January 2019 22

Session Status – Configuration Only (Added in FW v1.07)

Method: GET Function: Configuration

 [GET] https://10.0.0.1/api/session/configuration
Returns:
HTTP/1.1 200 OK
X-Frame-Options: DENY
Content-Length: 585
Content-Type: application/json; charset=utf-8
Status: 200 Success
Date: Tue, 23 Oct 2018 14:25:18 GMT
Server: lighttpd/1.4.49

{
"Configuration":{
 "DPI":200,
 "ScanSide":"Duplex",
 "ColorMode":"Color",
 "SkipBlankPages":0,
 "AutoStart":0,
 "ColorDropOut":"None",
 "ColorDropOutAggressiveness":0,
 "OutputType":"Images",
 "ColorAutoBrightnessMode":"Automatic",
 "ColorBalanceMode":"Automatic",
 "ColorBalanceAggressiveness":0,
 "ColorBalanceRed":0,
 "ColorBalanceGreen":0,
 "ColorBalanceBlue":0,
 "ForegroundBoldnessMode":"None",
 "ForegroundBoldnessAggressiveness":0,
 "BackgroundSmoothingMode":"None",
 "BackgroundSmoothingAggressiveness":0,
 "BinarizationMode":"iThresholding",
 "BinarizationContrast":0,
 "MaxDocumentLength":140}
}

Implementors Tips:

The response to this query returns only the configuration branch of the Session Status tree. This is of the same format of

the data written to the scanner on a PUT Configuration.

https://10.0.0.1/api/session/configuration

A-61872 January 2019 23

Session Configuration

Method: PUT Function: Configuration

This command changes the state of the current active session or starts a new session with this state.

 [PUT] https://10.0.0.1/api/session

Or

[PUT] https://10.0.0.1/api/session/configuration

Implementors Tips:

The format of the GET /configuration and GET api/scanner/capabilities (defaults section) is identical to the PUT

/configuration command. So you can read the current settings, or read the defaults and put those defaults back to the

scanner to reset it to default.

Parameters are in JSON format, and selected from the capabilities list. If a parameter is missing previous settings will be

used. This command supports changing any one or more parameters.

Changes to the configuration become active when the state is set to “Scanning”. A 405 response means you are not in

either “Done Scanning” or “In Session” modes.

“Status: 405 Method not allowed. Invalid State.”

You are able to load all of these settings from either a GET of /api/session with the appropriate sessionId, or via

api/scanner/capabilities and use the default group to modify and write back via PUT /api/session. If the settings are

valid, they will be accepted in any OutputType mode. So changing a color setting in BW mode, will not cause an error

response.

SkipBlankPages – will cause the scanner to skip pages with less than 5% content. This setting is not valid if the

OutputType is set to SinglePageColorPDFPlus2TIFs and will result in a 405 error.

AutoStart when set to 0 causes an on scanner prompt to start the scan job. A value of 1 means to attempt to pull paper

to immediately start scanning. If no paper is present then prompt on the scanner to start scanning.

ColorDropOut enables you to select a color to drop from BW images. See the list of colors supported in the

api/scanner/capabilities command:
"ColorDropOut":["None","Red","Green","Blue","Orange","OrangeAndRed","Predominant","Multiple"]

ColorDropOut only has an impact on BW mode documents only. See capabilities to learn more about command

dependancies.

ColorDropOut of Predominant or Multiple requires setting of ColorDropOutAggressiveness.

OutputType supported is Image and SinglePageColorPDFPlus2TIFS. See the Session Configuration rules for details on use

of this parameter. Image will result in jpg images for color and gray, or tif for BW. If output type is

SinglePageColorPDFPlus2TIFS the resulting output is PDF followed by one or two tif images, depending on the ScanSide

setting (Simplex, Duplex). Note that scanning with ColorMode set to Color_BW, and OutputType set to

SinglePageColorPDFPlus2TIFS in duplex mode will increase the “status.NumImagesScanned” by 3, whereas OutputType

of Image will increase the “status.NumImagesScanned” by 4.

A-61872 January 2019 24

MaxDocumentLength defines the maximum size of the document you would like to scan. This is an integer value in

tenths of inch’s resolution. Leaving this at 140 (14.0 inch’s), will work for shorter documents. If you scan larger than 14

inch’s, without changing this, will result in a paper jam during scanning.

Color, Color_BW and Gray options:

Use /api/scanner/capabilities to learn the min/max/default of each of these settings.

Color Brightness – to enhance brightness of each image.

Foreground Boldness - use this option for documents or forms where you want the foreground (e.g. text, lines, etc.) to

be more or less prominent.

Background Smoothing - use this option for documents or forms with a background color will help produce images with

a more uniform background color. This option improves image quality and may reduce file size.

Color and Color_BW options, Not Gray:

Color Balance - Automatic: adjusts the white background of each document to pure white. This option compensates for

the variations that occur between different weights and brands of paper. This is not recommended for use with

Photographs.

BW and Color_BW options:

Binarization mode and contrast setting. iThresholding: the scanner analyzes each document to determine the optimal

settings to produce the highest quality image. This option allows scanning of mixed documents with varying quality (i.e.,

faint text, shaded backgrounds, color backgrounds) and when scanning with consistent document sets.

Contrast - allows you to make an image sharper or softer. Decreasing this setting will make the image softer and reduce

noise in the image. Increasing this setting will make the image clearer and make light information more visible.

To interact with all of these options, access /conf/diag.html prior to programming them.

GET on this same HTTPS will result in a response that reflects the state you have set, or the initial default state. The Get

to retrieve just the configuration settings is via: http://<IP>/api/session/configuration?SessionId=1026744520 where the

SessionId is from the Session Create.

Params in PUT body:

See capabilities for list of options, defaults, and range of settings:

Extra HTTP Header Values:

SessionId=$SessionId

Return Value:

Success returns standard 200 success response.

Error returns:

Error will return an HTTPS error. After sending Command=Scan and while in the Scanning state, a call to this command

will result in an HTTPS error (405 Method Not Allowed). It is possible to start scan again, without losing the lock on the

scanner. Note that sending the StartScan will delete any previously scanned images and Status “Number of Images

Stored” will go to 0.

Raw HTTP Command:

PUT https://10.234.10.175/api/session HTTP/1.1

Host: 10.234.10.175

SessionId: 1234

{

A-61872 January 2019 25

 "Configuration": {

 "DPI": 200,

 "ScanSide": "Duplex",

 "ColorMode": "Color",

 "SkipBlankPages": 0,

 "AutoStart": 0,

 "ColorDropOut": "None",

 "ColorDropOutAggressiveness": 0,

 "OutputType": "Images",

 "MaxDocumentLength": 140,

 "ColorAutoBrightnessMode": "Automatic",

 "ColorBalanceMode": "Automatic",

 "ColorBalanceAggressiveness": 0,

 "ColorBalanceRed": 0,

 "ColorBalanceGreen": 0,

 "ColorBalanceBlue": 0,

 "ForegroundBoldnessMode": "None",

 "ForegroundBoldnessAggressiveness": 0,

 "BackgroundSmoothingMode": "None",

 "BackgroundSmoothingAggressiveness": 0,

 "BinarizationMode": "iThresholding",

 "BinarizationContrast": 0

 }

}

Raw HTTP Response:

HTTP/1.1 200 OK

Content-Length: 0

Status: 200 Success

Date: Wed, 03 Oct 2018 20:28:05 GMT

Server: lighttpd/1.4.49

Session Configuration rules

1. Use the api/scanner/capabilities to learn all of the configuration options that can be set via this PUT.

2. We do not support SkipBlankPages on (1) when in Duplex and OutputType of SinglePageColorPDFPlus2TIFs.

3. SinglePageColorPDFPlus2TIFs can only be set when ColorMode is set to Color_BW.

4. Color_BW mode is also called “Dual Stream” and is supported for OutputType of both Image and

SinglePageColorPDFPlus2TIFs.

5. SinglePageColorPDFPlus2TIFS, result in one PDF document that has either one (simplex) or two (duplex) raster

images on separate pages within the single PDF. It will result in either one (simplex) or two (duplex) TIF images.

6. Color_BW mode provides two images per scan side, one Color, one monotone BW.

7. The scanning process is identical in Dual Stream scanning mode for either image or PDF, and for simplex or

duplex. Simply continue to poll api/session/status once per second, when NumImagesScanned is incremented,

download the one or more images. Obtain details on each group of images from the Get Metadata command.

8. When scanning in Color_BW (Dual Stream) with an OutputType of Image the images will be provided JPG, TIF,

JPG, TIF for each duplex page, resulting in 4 images available for each physical page.

9. When scanning in Color_BW (Dual Stream) with an OutputType of SinglePageColorPDFPlus2TIFs the images

will be provided PDF, TIF, TIF for each duplex page, resulting in 3 images available for each physical page.

A-61872 January 2019 26

A-61872 January 2019 27

Session Recreate and Scan

StartScanning api can be sent prior to the DELETE (unlock) of the scan session. This enables you to perform multiple

scans inside the scope of one job and enables you to design your application to retain ownership of the scanner for any

duration you wish. You must obey the timeout rules associated with the Create, and perform keep alive commands to

retain that lock.

When Status:State=DONE_SCANNING, you can perform another StartScanning command. Performing a StartScanning

will purge all image data from your previous scan and acts like a DELETE and POST in one step. The $SessionId is the

value you retrieved when you did your initial Session Create. See Session Configuration for parameters.

Session Start Scan

Method: POST Function: StartScan

[POST] https://10.0.0.1/api/session/startscan

This starts a scan. After this command calls to Session Status will enable you to monitor the state of the scan and

GetImage to retrieve images as they become available.

A 200 (success) means a scan has been initiated.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Raw HTTP Command:

POST https://10.234.10.175/api/session/StartScan HTTP/1.1

Host: 10.234.10.175

SessionId: 1234

Raw HTTP Response:

HTTP/1.1 200 OK

Content-Length: 0

Status: 200 Success

Date: Mon, 14 Sep 2015 21:05:32 GMT

Server: lighttpd/1.4.33

Session Stop Scan

Method: POST Function: StopScan

[POST] https://10.0.0.1/api/session/stopscan

This optional command will pause an active scan.

Implementors Tips:

The session remains active and must be closed (DELETE), or restarted (StartScan). You could use this command to pause

scanning after the currently loaded sheet of paper is scanned. You can then access all of the scanned images upto status.

NumImagesScanned. Then restart the scan without losing the session lock. The new scan (StartScan) will reset

NumImagesScanned to 0. Treat this command as a mechanism to clean up memory in the scanner prior to rescanning,

or as a non-destructive pause. Alternately use Delete to clean up memory without pausing.

https://127.0.0.1:80/api/session/startscan
https://127.0.0.1:80/api/session/stopscan

A-61872 January 2019 28

A 200 (success) means a scan has been stopped. If there is an error stopping a scan you will receive a: “Status: 405

Method not allowed. Error stopping the scan.”. Note that it is a good idea to call GetStatus after stopping a scan to

determine if you have additional pages to download. You are not required to download all pages. You should call

Session End to abort the current scan, if you don’t intend to download any more images.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Raw HTTP Command:

POST https://10.234.10.175/api/session/StopScan HTTP/1.1

Host: 10.234.10.175

SessionId: 1234

Raw HTTP Response:

HTTP/1.1 200 OK

Content-Length: 0

Status: 200 Success

Date: Mon, 14 Sep 2015 21:06:31 GMT

Server: lighttpd/1.4.33

Session Get Metadata

Method: GET Function: metadata

 [GET] https://10.0.0.1/api/session/metadata/$ImageNum

HTTP Header:

SessionId=$SessionId

Response in body:

Information returned in JSON format:
ImageNum=1 <- this will echo the same ImageNum in your request header

SheetNum=1

PaperSource=Rear <- this is CameraType in NG language (Front, Rear, Both, All)

ImageSize=<Size in bytes>

ImageWidth=<in pixels>

ImageHeight=<in pixels>

XResolution=300 <- dpi

YResolution=300, <- dpi

BitDepth=24, <- 1,8,24

 "EndOfSheet":0,
 "ImageFormat":"PDF"} <- TIFF, JPEG or PDF

Implementors Tips:

ImageNum is from 1..status:NumImagesScanned .

The above example shows that the front side of page 1 was skipped. Your first image is Sheet #1 and back size. If no

pages are skipped your first read will show Sheet #1, front. Sheet number increments per physical page. So you could get

I1 S1 Front, I2 S1 Back, I3 S2 Front, I4 S2 Back and so on.

If you turn SkipBlankPages to True, you will not get the blank pages to download – we throw them away. If you turn

SkipBlankPages to False, we will not flag any pages that are thought to be blank.

https://127.0.0.1:80/api/session/metadata/$ImageNum

A-61872 January 2019 29

Note if you set SkipBlankPages to False, this function does not have to be called. Downloading the TIF/JPG will enable

you to query those files for the ImageWidth,ImageHeight, ImageSize and the ImageNum, SheetNum and PaperSource is

predictable. We do not support advanced algorithms in our product that enable you to scan multiple images on a single

page, or chunk image data (YET). This function is here to enable future support of that, if needed.

EndOfSheet indicates the page you are referencing is the last image on this sheet.

ImageFormat is set to either “JPEG”, “TIFF” or “PDF”.

Raw HTTP Command:

GET https://10.234.10.175/api/session/metadata/3 HTTP/1.1

Host: 10.234.10.175

SessionId: 1234

Raw HTTP Response:
HTTP/1.1 200 OK

Content-Length: 177

Content-Type: application/json; charset=utf-8

Status: 200 Success

Date: Tue, 22 Sep 2015 14:16:44 GMT

Server: lighttpd/1.4.33

{"Metadata":

{

"ImageNum":1,

"SheetNum":1,

"PaperSource":"Front",

"ImageSize": 95997,
"ImageWidth": 1792,
"ImageHeight": 824,
"XResolution":300,

"YResolution":400,

"BitDepth":24,

"EndOfSheet":0,

"ImageFormat":"JPEG"} }

}

http://10.234.10.175/api/session/metadata/3

A-61872 January 2019 30

Session Get Image

Method: GET Function: Image

 [GET] https://10.0.0.1/api/session/image/$ImageNum

$ImageNum= is the image Number that you are querying and is from 1..status:NumImagesScanned.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Response:

 Image data in either JPEG, TIFF or PDF format.

This returns either a JPG for a grayscale or color image, a TIF for a 1 BPP bitonal image, or a PDF document for Color_BW

mode.

Return Value:

Success returns an image of the full image size.

Raw HTTP Command:
GET https://10.234.10.175/api/session/image/10 HTTP/1.1
Host: 10.234.10.175
SessionId: 1234

Raw HTTP Response:
HTTP/1.1 200 OK
Content-Type: image/jpeg
Transfer-Encoding: chunked
Date: Wed, 29 Jul 2015 20:58:15 GMT
Server: lighttpd/1.4.33

<image data>

Get Image Code Example:
// ipAddress is the IP of the scanner

// inLockId – is the sessionId you obtained on the Create Session (POST)

// inImageNum is the image from 1.. Status.NumImagesScanned from /api/session/status

function getImage(ipAddress, inLockId, inImageNum)

{

var address = window.location.href;

var protocol = (address.indexOf("https") == 0) ? "https://" : "http://";

var portNumber = (protocol == "https://") ? 443: 80;

var url = protocol + ipAddress + ":" + portNumber + "/api/session/";

try {

Image_window = window.open("", "Scanned Image", "location=0,status=1,width=700,height=800,", false);

// if Image_window == undefined then pop up blocking is on – handle this

Image_window.location.href = url + "Image/" + inImageNum + "?SessionId=" + inLockId;

} catch (e) {

debugger;

DisplayStatus('Error loading image: ' + e.message, "Crimson");

throw e;

}

}

https://127.0.0.1:80/api/session/image/$ImageNum
http://10.234.10.175/api/session/image/10

A-61872 January 2019 31

Session Delete Image (Added to S2000w as of Firmware 180902)

Method: DELETE Function: Image

 [GET] https://10.0.0.1/api/session/image/$ImageNum

$ImageNum= is the image Number that you are querying and is from 1..status:NumImagesScanned.

Params in body: none

Extra HTTP Header Values:

SessionId=$SessionId

Return Value:

none

Raw HTTP Command:

DELETE https://10.234.10.175/api/session/image/10 HTTP/1.1
Host: 10.234.10.175
SessionId: 1234

Raw HTTP Response:
HTTP/1.1 200 OK
Content-Length: 0
X-Frame-Options: DENY
Date: Wed, 03 Oct 2018 20:35:53 GMT
Server: lighttpd/1.4.49

Implementors Tips:

This command is optional and removes one of the images from the scanners internal memory to free up more space for

scanning. This is only needed if you intend to scan more than 50 images in one session. We will automatically delete all

images at the end of a session.

It does not change any of the image numbers. Status.NumImagesScanned will not change once an image is deleted, but

Status.NumImagesStored will decrement. If you delete image 1, then try to Get image 1, you will receive an:

Status: 404 unable to read this image, it may have been deleted.

Delete of image 1 will succeed (200), then another delete will fail (404).

https://127.0.0.1:80/api/session/image/$ImageNum
http://10.234.10.175/api/session/image/10

A-61872 January 2019 32

CORS support
A browser has security to protect accessing web api’s outside of it’s current domain. A device can be queried for support

of Cross Origin Resource Sharing. We support CORS with Pre-Flight and reply with CORS headers in every response after

support for CORS is turned on. Since this is a developer mode, there is no UI to configure CORS. There are at least three

ways to turn this on/off. Note that this feature makes your scanner accessible from outside your current domain. The

default configuration is OFF. Changes to this setting are sticky across reboots, but will be turned off on a RESET.

To Turn on CORS and CORS Preflight support:

1) EasySetup, paste this into a browser:

https://easysetup.kodakalaris.com/api/config/EasySetup?WEB_CORS_ENABLE=ON&EZSETUP_DESCRIPTION=Ko

dak%20Alaris%20CORS%20ON

It generates a PDF, which when scanned in EasySetup mode will turn CORS support on.

2) Post: a body of WEB_CORS_ENABLE=ON to the URL: https://10.0.0.1/api/config/ApplyChanges which assumes

your scanner IP address is 10.0.0.1. This will take immediate effect.

3) POST Using CURL you could paste into the console:

curl -d WEB_CORS_ENABLE=ON https://<ip_address>/api/config/ApplyChanges -k --insecure

CORS Header response

The response from all of the Web API commands when CORS is enabled is:
Access-Control-Allow-Headers: Content-Type, Access-Control-Allow-Headers, X-Requested-
With, Origin, Content-Length, SessionId
Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS
Access-Control-Allow-Origin: *

CORS Preflight

We support CORS Preflight. Preflight enables a system to request only the headers for every command to validate that

the scanner supports cross domain sharing prior to requesting data.

Example:

https://10.0.0.1/api/config/ApplyChanges HTTP/1.1

Host: 10.0.0.1

WEB_CORS_ENABLE=ON

https://easysetup.kodakalaris.com/api/config/EasySetup?WEB_CORS_ENABLE=ON&EZSETUP_DESCRIPTION=Kodak%20Alaris%20CORS%20ON
https://easysetup.kodakalaris.com/api/config/EasySetup?WEB_CORS_ENABLE=ON&EZSETUP_DESCRIPTION=Kodak%20Alaris%20CORS%20ON
https://10.0.0.1/api/config/ApplyChanges

A-61872 January 2019 33

Error Codes – HTTP
All HTTP commands are parsed for completeness and accuracy. All responses follow the standard error response format,

with HTML information and a header status field to aid in differentiating error responses.

For example:

Status: 400 Bad Request. We support Put, Post, Get, Delete.

Downloading the log from the scanner will provide much more detail on each call.

Error codes will be returned with HTTP error responses for all commands that do not suit our design, sequence format,

or parameter list. Additional information will be returned in the response in JSON format if appropriate for that

command. Listed below are the errors we generate via our API.

Error 500 means bug in server side implementation. Typically returns like:
HTTP/1.1 500 Internal Server Error
Content-Type: text/html
Content-Length: 369
Date: Fri, 11 Sep 2015 16:51:07 GMT
Server: lighttpd/1.4.33

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>500 - Internal Server Error</title>
 </head>
 <body>
 <h1>500 - Internal Server Error</h1>
 </body>
</html>

All errors reported from the WebAPI will respond in this form:
HTTP/1.1 405 Method Not Allowed
Status: 405 Method not allowed. Session must be created first.
Transfer-Encoding: chunked
Date: Mon, 14 Sep 2015 15:00:01 GMT
Server: lighttpd/1.4.33

Report a bug on all Error 500 responses, this means Kodak Alaris bug. You should never see an error 500 response.

Repeating the command MAY resolve the failure. It’s also possible that on a 500, the command you issued took effect,

and exiting from that command caused the failure.

We use 404 (Not Found) as our generic error message. The ErrorNum in the JSON block returned with the error string in

the body. The HTTP errors and Status Error codes can be combined into one table on the application side.

HTTP/1.1
Responses

Description JSON
ErrorNum

JSON ErrorString

200 OK - Success 200 Success

400 Bad Request.

 There are 56 different 400 responses with additional
information to enable you to debug why your
command is failing.

 We support Put, Post, Get, Delete.

 Mode unknown or invalid. Potential server
side code bug.

 Good command, exception processing
command.

 Command Failed.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

A-61872 January 2019 34

 Invalid request. Not allowed while someone
is InSession.

 Bad Request. Mode unknown or invalid.
Potential server side code bug.

And some that you should never see, which only
means you slipped a parameter past our checks
which is invalid:

 Bad scan parameters set at start of scan,
possible timeout.

 Bad camera(FRONT Camera) parameters set
at start of scan.

 Bad camera(REAR Camera) parameters set
at start of scan.

 Good command, exception processing
command (1)

 Good command, exception processing
command (2)

403 Forbidden

 SessionId is empty.

 SessionId is wrong.

 Not the registered user in single user.

405 Method Not Allowed

 Bad command or parameter, not following the
documented rules. The reply from each 405 will
include more details on exactly what is incorrect.
There are at least 44 responses with additional
information to help you understand what is not valid
about your use of the api.

 Session must first be created.

 Scanning already active.

 Fix error before scan can start.

 No active scan.

 This is not a valid command.

 Session must first be created.

 Method not allowed. Start of Scanning
failed.

 Invalid setting

 Unable to load JSON (invalidly formatted
JSON)

406 Not Acceptable

 There are at least 28 different 406 responses that
will inform you why the command parameters are
not acceptable.

 JSON Data missing.

 JSON variable wrong.

 JSON ScanSide wrong.

 JSON ColorMode wrong.

 For example setting DPI to 75 would return
this error.

408 Request Timeout. 408 is returned in Create Session when the scanner
is waking. Display waking, sleep for 1 or more

A-61872 January 2019 35

seconds, and repeat the Create. See Timeout section
for more details.
408 on Get Status means you timed out and took
too long to call the scanner with a command. Five
minutes will abort your job, leaving the scanner
open to anyone for use. When this occurs the first
poll of Get Status will change the state to Idle.

416 Parameter out of range

 Image requested greater than number of images
available.

420 Method Failure.

 This may indicate a firmware bug, or misuse of an
api.

423 Locked Someone else has an active session. Try again.

500 Internal Server Error

 Internal uncaught exception processing command.
Firmware bug. Capture logs and report this to Kodak
Alaris Support.

501 Not Implemented.

 Not supported feature. Treat like a 405.

520 Unknown Error.

 Bug in deciphering command or invalid command.
Your code is calling an unsupported api.

522 Timeout

 Deprecated – no longer returned by scanner. A 408
is the normal timeout response.

Error Codes – returned from Status

Internal scanner errors can result in the State changing to Error. In this case you would look at ErrorNum and the

ErrorNum Table provided below.

Paper Jam:

“Status->State = Error and Status->ErrorNum=3 means Paper Jam.

A-61872 January 2019 36

The error occurs after you issue a StartScan command. Once a paper handling error, scanning is stopped. Polling of

“Status” will not change the state after you clear the paper jam. You’ll need to issue a StartScan command to refresh

the state. During a paper jam the StartScan will return with an error 405 and the raw response looks like:

HTTP/1.1 405 Method Not Allowed
X-Frame-Options: DENY
Content-Length: 0
Status: 405 Method not allowed. Start of Scanning failed.
Date: Thu, 10 Mar 2016 19:05:37 GMT
Server: lighttpd/1.4.35

Notice in the header above, the “Status” field. This repeats the error, but adds more information to aid in your

determination of the cause of the error. It is also repeated on a subsequent “Status” command and put into LastError

field, shown below.

A-61872 January 2019 37

When the paper jam is cleared, StartScanning will return 200 response (OK), and GetStatus will show ErrorNum=0,

“LastError=Status: 200 Success”, and State of “Scanning”.

ErrorNum Table
This table is taken from the 9.5 version of the host interface spec internal to Kodak Alaris Inc:

Status

Description

Status

Value

Processing Information

Success 00h Returned when the command competed successfully.

No image ready 01h The scanner is enabled and there are no images in the scanner’s image
buffer. The host computer shall continue asking for images.

End of output 02h Returned when the scanner is in the idle state and there are no more

images in the scanner’s image buffer. The host computer shall stop asking

for images. The host computer may use the information field for the

number of images uploaded for the scan batch job. This allows the host to

validate the number of images it has.

Paper jam 03h Returned when the scanner detected a paper jam. Alert the operator of a

paper jam.

Multifeed 04h Returned when the scanner detected a multi-feed. Alert the operator of a

multi-feed. (only if the scanner was configured to end the job upon

detection of the multi-feed)

Lamps warming 05h The scanner’s lamps are warming up for scanning or calibration purposes.

The command was not successful.

* Data 1 – 2 (Data 1 is MSB) specify the Lamp Warm-up time (in seconds)

needed for the lamps to warm up before executing the specified command.

Fail 06h Returned when there is an unexpected error due to issues such as

unrecognized command, invalid data fields, parameter check failure, or the

scanner is in an invalid state for processing the command sent. Also

returned when command execution has failed, which may occur during

calibration or diagnostics. The operator should be notified to check the

operator log for failure details.

Cover Open 07h The scanner has detected that a cover is open and is failing the command.

Calibration

Required

08h The scanner has detected that a calibration is required.

White Patch Area

Not Found

09h Returned when the white patch was not detected.

Print Head Not

Present

0Ah Returned when the print head is detected as not present.

Clean Imaging

Guides and Re-

feed

0Bh Returned when the scanner detects that the imaging guides need to be
cleaned and to tell the operator to re-feed documents

Feed Cartridge

Not Present

0Ch Returned when the feed cartridge is detected as not present.

A-61872 January 2019 38

Status

Description

Status

Value

Processing Information

ECDO Custom

Lean Fail

0Dh Returned when the custom ECDO learn algorithm fails.

Critical error 0Eh The scanner is in the Critical Error state.

ECDO Custom Not

Single

0Fh The requested ECDO Custom Single was not a single, it was either not
defined or defined as an ECDO Custom Multiple.

Unexpected Error 10h -

FFh

These are unexpected status codes that the host may receive which could
be used to support other interfaces. The host software will remap these
received status codes to the Fail status code described above.

A-61872 January 2019 39

Timeouts
Two “timeouts” are implemented in the scanner to eliminate a chance of a deadlock:

1. The “Create Session” timeout is 5 minutes. Any session command will reset that timer. In other words,
“api/Scanner/Status” will not reset the timeout; “api/Session/status” will.

a. You would normally be polling the session status after you start a scan, waiting for the start button. An
application that intends to implement a timeout while waiting for the start button to be pressed would be
polling “session/status” and would implement its own application specific timeout.

b. The default timeout is intended to trigger when an application connection fails: an application that starts a
scan and stops polling status will timeout in 5 minutes.

c. Your termination of scanning within a job can be initiated via either a DELETE or a StopScan. StopScan does
not terminate the scan session. Delete does terminate the scan session.

d. If you Create Session and do nothing for five minutes the scanner will release that session. Any access to the
api using the old SessionId will result in either a 405 error (the scanner is not locked) or a 423 error
(someone else has the scanner locked).

2. How to handle an error during Create Session
a. Any error on a Create Session means you did not obtain the lock and you can try again.
b. When the scanner is in low power and a Create Session is issued, the status “waking” is returned. This is

done via a http 408 error response. The scanner will return the waking error for upto 12 seconds.
c. Send the Create Session command again until the scanner returns a 200 success response. A one second

delay in responding with this error is enforced by the web server to keep hosts from rapidly polling the
scanner.

A-61872 January 2019 40

More Details

Scan Example
1) Create Session (POST /api/session), error 408 means scanner is waking – repeat this until you get a 200.

2) Optional: Set parameters (PUT /api/session) with configuration parameters in the body (JSON format)

3) Start Scan (POST /api/session/StartScan)

4) Loop on Status (GET /api/session)

a. If (Status->NumImagesAvailable is greater than the last image you have downloaded) then GET

/api/session/Image/# where # is the image you want to read from 1.. Status->NumImagesAvailable.

b. If (Status->State is not equal to “Scanning”) then you have completed scanning either with an error or

successfully. On success, complete downloading all of the images. You MUST call GET Status to update

the state of the scanner.

5) Optional: Call Get Metadata for the image (GET /api/session/metadata/#)

a. The only reason to call Get metadata is if you needed to know the image size prior to downloading it, or

if you had Skip Blanks turned ON, and you needed to know the page number and side(Front/Back).

6) Optional: Loop back to Start Scan, note the images on the scanner will be deleted on Start Scan and

NumImagesAvailable goes back to 0.

7) End Session (DELETE /api/session). Also after five minutes the session will timeout from inactivity.

How this looks recording with Fiddler Web Debugger:

A-61872 January 2019 41

Scan API: URL and JSON Response
The commands to do a full 300 DPI, duplex, color scan:

RESTful command JSON Response
POST http://S2080w-64633633.local/api/session

{"SessionId": "1765739049"}

PUT http://S2080w-
64633633.local/api/session?SessionId=1765739049

With JSON data of:
{"Configuration": {

"DPI": 300,
"ScanSide": "Duplex",
"ColorMode": "Color",
"SkipBlankPages": "0"

}}

POST http:// S2080w-
64633633.local/api/session/StartScan?SessionId=1765739049

GET http:// S2080w-
64633633.local/api/session?SessionId=1765739049

{

"Status":{

"NumImagesStored": "0",

"NumImagesScanned": "0",

"State": "Scanning",

"ErrorNum": "0",

"LastError": "Status: 200 Success",

"PaperDetected": "1",

},

"Configuration":{

"DPI": "300",

"ScanSide": "Duplex",

"ColorMode": "Color",

"SkipBlankPages": "0"}

}

Put paper in the scanner and press Scan button on the scanner

GET http:// S2080w-
64633633.local/api/session?SessionId=1765739049

{

"Status":{

"NumImagesStored": "4",

"NumImagesScanned": "4",

"State": "Done Scanning",

"ErrorNum": "0",

"LastError": "Status: 200 Success",

"PaperDetected": "0",

},

"Configuration": {

"DPI": "300",

"ScanSide": "Duplex",

"ColorMode": "Color",

"SkipBlankPages": "0"}

}

A-61872 January 2019 42

Keep issuing Get Status commands until the STATE changes to “Done Scanning”, or for “NumImagesScanned” to
increase beyond the value you last read. I read 0 at start, and now shows 4, so I can get images 1..4. If when I read
the Get Status – NumImageStored command again, it shows 5, or 6, I will read image 5 then 6. Once you have read all
of the images and the State is at Done Scanning – you are done.

GET http://S2080w-
64633633.local/api/session/image/1?SessionId=1765739049

In this example an image/jpg of size

182769

GET http://S2080w-
64633633.local/api/session/image/2?SessionId=1765739049

Second page

GET http://S2080w-
64633633.local/api/session/image/3?SessionId=1765739049

Third page

GET http://S2080w-
64633633.local/api/session/image/4?SessionId=1765739049

Fourth page

GET http://S2080w-
64633633.local/api/session?SessionId=1765739049

Status shows I’m done so I can either

start another scan or end the job with a

DELETE

DELETE http://S2080w-
64633633.local/api/session/StartScan?SessionId=1765739049

A-61872 January 2019 43

Programmers Page to play with the protocol

Diagnostic / Test page

This page is referenced in many location in this document to conf/diag.html. This is a test page, and helpful to

implementors to look at underlying javascript or html that is used to drive the api from a web page.

A-61872 January 2019 44

Since this is for implementers and breaks the Web API into its smallest parts.

Key to using this page requires understanding that a user would press the buttons in the order that an implementer

would code within their application. There is not one button that does everything, although we provide example

applications that do that. For example the mobile application, or the python sample script called the Big Green button

application (KaBgbScanningApp.py), both of which uses the Web API to drive the scanning functionality.

In this newest version of this page, we implemented some rules for showing the new scan configuration controls.

Although only some controls are shown, all items in the PUT Configuration block are read, and returned each time.

If you have not – please read about Session Status before proceeding.

In the pseudo code below < > means this step is optional. Also note that only pressing of the buttons initiates an API call

to the scanner from the host browser. The drop down selections and numeric fields are parameters for some of those

calls.

Scan Example, pseudo code:
Press:

 Start Session

 Make the desired changes to the drop lists and Max Doc Length.

 Set Configuration

 <Status> <- do this just to look at the return results from your Set Configuration to confirm everything is as you wish

 Start Scan

Loop start:

 Status <- you now must keep pressing this until State goes to Done Scanning

 If NumImagesScanned>0

 <Set the numeric control next to Get Image to 1>

 <Get Image> <- display image 1. Close or move aside when done.

 <Get All Images> <- display all available images

 Sleep at least 1 second

 Loop back to “Loop start” <- Repeat until top right Status: State goes to NOT “Scanning”

 Get image 1 then 2, then …

 Get All Images <- this works well with color images, but Chrome/IE do not support reading TIF images when BW is selected

in OutputType. Firefox does.

 Get Metadata <- note that this works off of the numeric control next to Get Image to define what image metadata you

want.

 <Stop Scan> <- this is NOT needed, unless you intend to stop scanning while paper is moving.

 End Session <- This terminates the session and erases the “lock id”. Access to images from the previous session are no

longer possible.

You can experiment with these before writing code on http://<ip>/conf/diag.html

A-61872 January 2019 45

Also use our Python example application, provided with the toolkit with source code:

Python scripts are available from Kodak Alaris technical support for Simple Scan, Scanner Controller, and a Big Green

Button application.

Typical Sequence to use the API’s
Discover zero or more scanners using Bonjour (See Discovery Protocols). Bonjour can take a few seconds to fully update.

If you find a scanner, a few seconds later a second scanner can report it exists. You may want a dynamic list that

updates as scanners show up, or a refresh button to update the display. If you use a static IP, DNS name or link local

name to access your scanner, you can read all of the details of the name and information about that scanner from the

Config API.

Prior to writing code - Learn about new capabilities

(GET) api/scanner/Capabilities to read the settings we support and their range of values. Outside and inside the scope

of a session you can perform a GET Status, and GET Capabilities. Update your display based upon the values in our

configuration. Note that these values may change in the future to show a wider range of options. This command is

designed to enable us to add more functionality and for you to learn of that functionality from the scanner.

Scanning

1. Create a Session

(POST) api/session, store the “SessionId”. If this succeeds you will retain ownership of that scanner until that

session times out (5 mins), or you delete the session. At this point the user can safely put paper into the scanner

and not be concerned that anyone but the application owning the session can scan it. If you close your

application, or your application times out you must delete the session.

2. Configure job

(PUT) api/session?SessionId=1234567890, optionally update the default parameters that configure the scan job

or use the default settings. You can also (GET) api/session/configuration to read all of the configuration

parameters that you might want to modify.

3. Scan Start

(POST) api/session/StartScan?SessionId=1234567890 the scanner starts scanning, and we internally cache

A-61872 January 2019 46

pages updating the Status. Access to those pages are secured via the SessionId returned from the Create

Session.

4. Poll Status

(GET) api/session/status?SessionId=1234567890 looking at NumImagesScanned and State. When this

NumImagesScanned is greater than 0, you can read that number of images from the scanner. Store this number

and continue monitoring for it to increment. NumImagesScanned is the index of the last image that has

completed scanning.

5. Read Images once NumImagesScanned increments

(GET) api/session/image/1?SessionId=1234567890

Keep track of this number and keep polling until State changes to something other than “Scanning”. As the

NumImagesScanned increment – you can immediately read those pages.

6. Completion options:

When State reaches “Done Scanning” you can either DELETE the session, to complete your session or start a new

one via the Session Recreate and Scan. You can read Image Metadata during the scanning process to update

your page. Now loop to #2 or #3 or continue scanning or continue to End Session. Optionally monitor the

Status.PercentAvailable and use the delete image command to free up memory.

7. End Session:

(DELETE) api/session?SessionId=1234567890 – ends your session deleting all internally stored image pages,

unlocks access to the scanner for use by any other user.

To scan many pages
The scanner internally stores pages for a job. It holds them until you call Stop Scan or you end the session. So how would

you scan a thousand pages given this limitation? StartScan – monitor status until you get 50 pages – StopScan,

download all of the pages once the State turns to “Done Scanning”, then call StartScan again. This sequence deletes all

stored images and metadata freeing up space within the scanner. If done quickly it shouldn’t slow down the scan

mechanism. You also won’t lose the persistant lock of the scanner, so no other host computers can start a scan job until

you End Session. Note that when you perform a StartScan the Status->NumImagesScanned variable will be reset to 0

(zero).

Security
No customer scan data is stored on permanently on the scanner. Once a job is complete or the connection times out,

the whole job is erased. Connection to a scan job is secured via a session lock ID, which is only valid for that one session

while scanning.

We recommend use of HTTPS. HTTPS provides an encrypted link to the scanner. The key within the scanner is private,

and secures your interaction with the scanner. The SessionId is a nonpredictive string which changes on every session.

SessionId will be passed with every Session command except “Create”, via one of two methods:

1. The header in a field called SessionId=2955999580

Ex: GET http://i1150wn-58333625/api/session/image/1 HTTP/1.1

A-61872 January 2019 47

Host: i1150wn-58333625

SessionId:2955999580

2. The Request header.

Ex: GET http://i1150wn-58333625/api/session/image/1?SessionId=2955999580 HTTP/1.1

The APIs support sending of the SessionId via the HTTP header or within the URL .

Ex: GET http://i1150wn-58333625/api/session/image/1?SessionId=2955999580 HTTP/1.1

Why use the Scanner API vs the Session API ?
The Session API drives scanning, and the Scanner API shows status and capabilities. The Scanner API is not needed to

scan pages. It is useful to track changes to the API and to test status of the scanner without attempting to Create a

session and to monitor the scanner status outside the scope of a scan job.

A GET http://S2080w-64633633.local/api/scanner/status

returns:
{"Status":{

 "Vid":"0x29cc",

 "Pid":"0x101C",

 "Mfg":"KODAK Alaris",

 "Mdl":"S2080w",

 "ScannerState":"Idle",

 "ErrorNum":0,

 "EstimatedMaxNumImages":50,

 "DisplayName":"S2080w-64633610",

 "HostName":"S2080w-64633610",

 "SerialNum":"64633610",

 "PlatformVersion":" 190103",

 "OCPUserName":"Vinnie"}}

 This informs you that the scanner is IDLE. When the scanner is not “Idle” the OCPUserName tells you who is using the

scanner.

The EstimatedMaxNumImages is fixed at 50, but is much more for B&W and different resolutions. Use the new Session

API Status. PercentAvailable to track how full the scanner is becoming. Use the Session API Delete command to free up

scanner internal memory.

How to determine the connection type from the IP
The CONFIG api is used for reading and changing connection settings.

Try:

GET http://S2080w-64633633.local/api/config/settings

This reads the current settings. What is unique about this is given the IP your scanner is configured for, you can resolve

the connection type : Ethernet or Wireless. And if wireless one more command will enable you to resolve if it is Wireless

infrastructure or ad-hoc.

http://S2080w-64633633.local/api/config/value?WIFI_MODE

the response looks like:
{

"Variable":"WIFI_MODE",

"Result":"AP"

}

 data.Result would be either:

“OFF”, “AP” or “STA”

A-61872 January 2019 48

AP means Wireless (ad-hoc), referenced as Wireless Directly on the Scanner Web Pages.

STA means infrastructure aka Wireless.

When WIFI_MODE is “OFF” and ETH0_IP_MODE is not “OFF” then you are in Ethernet mode.

Discovery Protocols
Bonjour is an industry standard multicast discovery protocol available in Linux, Windows and native to Apple devices. It

works very well at quickly finding all devices. We advertise our TCP protocol under _Scanner services, but the web

protocol is available under _http HTTP service. In addition to obtaining the IP and port of all of your scanners within the

subnet, you can obtain information about those scanners from the TXT record.

TXT Record from Scanner for _scanner service:

txtvers=1

vid=29CC

pid=101C

mfg=Kodak Alaris Inc.

mdl=S2080w Scanner

HTTPS_Port=443

sn=64633612

path=/index.html

ty=KODAK S2080w Scanner Web Service

DNS Address

In addition to bonjour we register with any available DNS servers. So from within your company you may be able to

connect to your scanner via HostName.<domain>. For example I can resolve the IP address of the scanner via:

S2080w-64633633.kodakalaris.net

Link-Local Address

You can also connect to your scanner via S2080w-64633633.local if you have a Link-Local name resolution service

running on your PC. Installing Apple Bonjour service under Windows provides this service.

Static IP

With the IP of your scanner you can access the API’s or web pages via that address. The previously described

/api/scanner/status information may prove useful to validate the scanner is the one your desire.

A-61872 January 2019 49

Diagram Scanning States

Normal Scan

A-61872 January 2019 50

Second Job Scan in same Session

A-61872 January 2019 51

Skip Blank Pages – Back side of first sheet is blank, two sheets

A-61872 January 2019 52

Fiddler capture of scan
This scan was done one command at a time to demonstrate the API. Errors were introduced to view the responses from

the scanner.

A-61872 January 2019 53

Fiddler’s Composer Scratchpad
Paste this into the Fiddler Composer tab, Scratchpad.

The example below assumes the Create Session returned a SessionId of 583205357. You will need to edit that along with

the IP address.
================ Create Session using the URL ===================
POST /api/session HTTP/1.1
Host: 10.0.0.1

{
"OCPUserName":"Vinnie's Phone"
}
.
// Change Configuration
PUT /api/session?SessionId=583205357 HTTP/1.1
Host: 10.0.0.1

{"Configuration":{
"DPI":300,
"ScanSide":"Duplex",
"ColorMode":"Color",
"SkipBlankPages":1}
}
.
// Start Scan
POST http://10.0.0.1/api/session/StartScan?SessionId=583205357 HTTP/1.1
.
// Stop Scan
POST http://10.0.0.1/api/session/StopScan?SessionId=583205357 HTTP/1.1
.
// Get Status - repeat until status = DONE_SCANNING
GET http://10.0.0.1/api/session?SessionId=583205357 HTTP/1.1
.
// Get Image 1

A-61872 January 2019 54

GET http://10.0.0.1/api/session/image/1?SessionId=583205357 HTTP/1.1
.
// Get Metadata 1
GET http://10.0.0.1/api/session/metadata/1?SessionId=583205357 HTTP/1.1
.
// End Session
DELETE http://10.0.0.1/api/session?SessionId=583205357 HTTP/1.1

Header version example, put session ID in header instead of URL.

.
// Start Scan
POST http://10.0.0.1/api/session/StartScan HTTP/1.1
Host: 10.0.0.1
SessionId: 583205357
.
PUT http:// 10.0.0.1/api/session HTTP/1.1
Host: 10.0.0.1
SessionId: 583205357

{"Configuration":{
"DPI":200,"ScanSide":"Duplex","ColorMode":"Color","SkipBlankPages":1}}
.
// Stop Scan
POST http://10.0.0.1/api/session/StopScan HTTP/1.1
Host: 10.0.0.1
SessionId: 583205357
.
// Get Image 1
GET http:// 10.0.0.1/api/session/image/1 HTTP/1.1
Host: 10.0.0.1
SessionId: 583205357

A-61872 January 2019 55

A-61872 January 2019 56

	Introduction
	References
	HTTP in the APIs
	Commands
	Addressing your scanner

	Reference Section
	SCANNER API
	[method] api/scanner/<function>
	Scanner Status
	Scanner Capabilities
	V1 Capabilities:
	V2 Capabilities:
	Implementors Tips:

	Scanner Log

	CONFIG API
	Configuration Settings
	Implementors Tips:

	Get Image of scanner
	Implementors Tips:

	SESSION API
	[method] api/session/<function>
	Session Create
	Session End
	Session Status
	Implementors Tips:

	Session Status – Status Only (Added in FW v1.07)
	Implementors Tips:

	Session Status – Configuration Only (Added in FW v1.07)
	Implementors Tips:

	Session Configuration
	Implementors Tips:
	Color, Color_BW and Gray options:
	Color and Color_BW options, Not Gray:
	BW and Color_BW options:

	Session Configuration rules
	Session Recreate and Scan
	Session Start Scan
	Session Stop Scan
	Implementors Tips:

	Session Get Metadata
	Implementors Tips:

	Session Get Image
	Session Delete Image (Added to S2000w as of Firmware 180902)
	Implementors Tips:

	CORS support
	To Turn on CORS and CORS Preflight support:
	CORS Header response
	CORS Preflight

	Error Codes – HTTP
	Error Codes – returned from Status

	ErrorNum Table
	Timeouts

	More Details
	Scan Example
	Scan API: URL and JSON Response
	Programmers Page to play with the protocol
	Diagnostic / Test page
	Scan Example, pseudo code:

	Typical Sequence to use the API’s
	Scanning

	To scan many pages
	Security
	Why use the Scanner API vs the Session API ?
	How to determine the connection type from the IP
	Discovery Protocols
	TXT Record from Scanner for _scanner service:
	DNS Address
	Link-Local Address
	Static IP

	Diagram Scanning States
	Normal Scan
	Second Job Scan in same Session
	Skip Blank Pages – Back side of first sheet is blank, two sheets

	Fiddler capture of scan
	Fiddler’s Composer Scratchpad

